Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.574
Filtrar
1.
Animal ; 18(4): 101127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574452

RESUMO

Supplementing a diet with rumen-protected amino acids (AAs) is a common feeding strategy for efficient production. For a cost-effective use of rumen-protected AA, the accurate bioavailability of rumen-protected amino acids should be known and their metabolism after absorption needs to be well understood. The current study determined the bioavailability, absorption, utilization, and excretion of rumen-protected Lys (RP-Lys). Four ruminally cannulated cows in a 4 × 4 Latin square design (12 d for diet adaptation; 5 or 6 d for total collections) received the following treatments: L0, a basal diet; L25, the basal diet and L-Lys infused into the abomasum to provide 25.9 g/d L-Lys; L50, the basal diet and L-Lys infused into the abomasum to provide 51.8 g/d L-Lys; and RPL, the basal diet supplemented with 105 g/d (as-is) of RP-Lys to provide 26.7 g of digestible Lys. During the last 5 or 6 d in each period, 15N-Lys (0.38 g/d) was infused into the abomasum for all cows to label the pool of AA, and the total collection of milk, urine, and feces were conducted. 15N enrichment of samples on d 4 and 5 were used to calculate the bioavailability and Lys metabolism. We used a model containing a fast AA turnover (≤ 5 d) and slow AA turnover pool (> 5 d) to calculate fluxes of Lys. The Lys flux to the fast AA turnover pool (absorbed Lys + Lys from the slow AA turnover pool to fast AA turnover pool) was calculated using 15N enrichment of milk Lys. The flux of Lys from the fast AA turnover pool to milk and urine was calculated using 15N transfer into milk and urine. Then, absorbed Lys was estimated by the sum of Lys flux to milk and urine assuming no net utilization of Lys by body tissues. Duodenal Lys flow was estimated by 15N enrichment of fecal Lys. The bioavailability of RP-Lys was calculated from duodenal Lys flows and Lys absorption for RPL. Increasing Lys supply from L25 to L50 increased Lys utilization for milk by 9 g/d but also increased urinary excretion by 10 g/d. For RPL, absorbed Lys was estimated to be 136 g/d where 28 g of absorbed Lys originated from RP-Lys. In conclusion, 68% of bioavailability was obtained for RP-Lys. The Lys provided from RP-Lys was not only utilized for milk protein (48%) but also excreted in urine (20%) after oxidation.


Assuntos
Lactação , Lisina , Feminino , Bovinos , Animais , Lisina/metabolismo , Rúmen/metabolismo , Disponibilidade Biológica , Dieta/veterinária , Aminoácidos/metabolismo , Proteínas do Leite/metabolismo , Aminas/metabolismo , Metionina/metabolismo
2.
Sci Rep ; 14(1): 9117, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643232

RESUMO

Milk protein content is an important index to evaluate the quality and nutrition of milk. Accumulating evidence suggests that microRNAs (miRNAs) play important roles in bovine lactation, but little is known regarding the cross-kingdom regulatory roles of plant-derived exogenous miRNAs (xeno-miRNAs) in milk protein synthesis, particularly the underlying molecular mechanisms. The purpose of this study was to explore the regulatory mechanism of alfalfa-derived xeno-miRNAs on proliferation and milk protein synthesis in bovine mammary epithelial cells (BMECs). Our previous study showed that alfalfa miR159a (mtr-miR159a, xeno-miR159a) was highly expressed in alfalfa, and the abundance of mtr-miR159a was significantly lower in serum and whey from high-protein-milk dairy cows compared with low-protein-milk dairy cows. In this study, mRNA expression was detected by real-time quantitative PCR (qRT-PCR), and casein content was evaluated by enzyme-linked immunosorbent assay (ELISA). Cell proliferation and apoptosis were detected using the cell counting kit 8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, western blot, and flow cytometry. A dual-luciferase reporter assay was used to determine the regulation of Protein Tyrosine Phosphatase Receptor Type F (PTPRF) by xeno-miR159a. We found that xeno-miR159a overexpression inhibited proliferation of BMEC and promoted cell apoptosis. Besides, xeno-miR159a overexpression decreased ß-casein abundance, and increased α-casein and κ-casein abundance in BMECs. Dual-luciferase reporter assay result confirmed that PTPRF is a target gene of xeno-miR159a. These results provide new insights into the mechanism by which alfalfa-derived miRNAs regulate BMECs proliferation and milk protein synthesis.


Assuntos
MicroRNAs , Proteínas do Leite , Feminino , Bovinos , Animais , Proteínas do Leite/metabolismo , Medicago sativa/genética , Medicago sativa/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Glândulas Mamárias Animais/metabolismo , Caseínas/genética , Caseínas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Luciferases/metabolismo , Células Epiteliais/metabolismo
3.
J Agric Food Chem ; 72(12): 6414-6423, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501560

RESUMO

Previous research has demonstrated that in pregnant mice deficient in l-methionine (Met), the mixture of the dipeptide l-methionyl-l-methionine (Met-Met) with Met was more effective than Met alone in promoting mammogenesis and lactogenesis. This study aimed to investigate the role of a novel long noncoding RNA (lncRNA), named mammary gland proliferation-associated lncRNA (MGPNCR), in these processes. Transcriptomic analysis of mammary tissues from Met-deficient mice, supplemented either with a Met-Met/Met mixture or with Met alone, revealed significantly higher MGPNCR expression in the Met group compared to the mixture group, a finding recapitulated in a mammary epithelial cell model. Our findings suggested that MGPNCR hindered mammogenesis and milk protein synthesis by binding to eukaryotic initiation factor 4B (eIF4B). This interaction promoted the dephosphorylation of eIF4B at serine-422 by enhancing its association with protein phosphatase 2A (PP2A). Our study sheds light on the regulatory mechanisms of lncRNA-mediated dipeptide effects on mammary cell proliferation and milk protein synthesis. These insights underscore the potential benefits of utilizing dipeptides to improve milk protein in animals and potentially in humans.


Assuntos
Fatores de Iniciação em Eucariotos , Metionina , RNA Longo não Codificante , Gravidez , Humanos , Feminino , Animais , Camundongos , Metionina/metabolismo , RNA Longo não Codificante/metabolismo , Dipeptídeos/metabolismo , Racemetionina/metabolismo , Proteínas do Leite/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo
4.
World J Gastroenterol ; 30(7): 728-741, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515944

RESUMO

BACKGROUND: Liver injury is common in severe acute pancreatitis (SAP). Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes, which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis. Our previous study found that milk fat globule epidermal growth factor 8 (MFG-E8) alleviates acinar cell damage during SAP via binding to αvß3/5 integrins. MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy. AIM: To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux. METHODS: SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50 µg/kg cerulein plus lipopolysaccharide. mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAP-induced liver injury. Cilengitide, a specific αvß3/5 integrin inhibitor, was used to investigate the possible mechanism of MFG-E8. RESULTS: The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice, enhanced autophagy flux in hepatocyte, and worsened the degree of ferroptosis. Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner. Mechanistically, MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells. Cilengitide abolished MFG-E8's beneficial effects in SAP-induced liver injury. CONCLUSION: MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury. MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrin αVß3/5.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ferroptose , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Pancreatite , Camundongos , Animais , Fator VIII , Pancreatite/induzido quimicamente , Pancreatite/complicações , Doença Aguda , Hepatócitos/metabolismo , Autofagia , Família de Proteínas EGF , Proteínas do Leite/metabolismo , Proteínas do Leite/farmacologia
5.
Biophys J ; 123(7): 885-900, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38433448

RESUMO

The specific recognition of peripheral membrane-binding proteins for their target membranes is mediated by a complex constellation of various lipid contacts. Despite the inherent complexities of the heterogeneous protein-membrane interface, the binding dependence of such proteins is, surprisingly, often reliably described by simple models such as the Langmuir Adsorption Isotherm or the Hill equation. However, these models were not developed to describe associations with two-dimensional, highly concentrated heterogeneous ligands such as lipid membranes. In particular, these models fail to capture the dependence on the lipid composition, a significant determinant of binding that distinguishes target from non-target membranes. In this work, we present a model that describes the dependence of peripheral proteins on lipid composition through an analytic expression for their association. The resulting membrane-binding equation retains the features of these simple models but completely describes the binding dependence on multiple relevant variables in addition to the lipid composition, such as protein and vesicle concentration. Implicit in this lipid composition dependence is a new form of membrane-based cooperativity that significantly differs from traditional solution-based cooperativity. We introduce the Membrane-Hill number as a measure of this cooperativity and describe its unique properties. We illustrate the utility and interpretational power of our model by analyzing previously published data on two peripheral proteins that associate with phosphatidylserine-containing membranes: The transmembrane immunoglobulin and mucin domain-containing protein 3 (TIM3) that employs calcium in its association, and milk fat globulin epidermal growth factor VIII (MFG-E8) which is completely insensitive to calcium. We also provide binding equations for systems that exhibit more complexity in their membrane-binding.


Assuntos
Cálcio , Proteínas do Leite , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Proteínas , Membranas/metabolismo , Lipídeos
6.
Theriogenology ; 220: 12-25, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457855

RESUMO

Although the association of maternal milk production with developmental programming of offspring has been investigated, there is limited information available on the relationship of maternal milk components with productive and reproductive performance of the offspring. Therefore, the present study was conducted to analyze the association of maternal milk fat and protein percentage and milk fat to protein ratio with birth weight, survival, productive and reproductive performance and AMH concentration in the offspring. In study I, data of birth weight, milk yield and reproductive variables of offspring born to lactating dams (n = 14,582) and data associated with average maternal milk fat percentage (MFP), protein percentage (MPP) and fat to protein ratio (MFPR) during 305-day lactation were retrieved. Afterwards, offspring were classified in various categories of MFP, MPP and MFPR. In study II, blood samples (n = 339) were collected from offspring in various categories of MFP, MPP and MFPR for measurement of serum AMH. Maternal milk fat percentage was positively associated with birth weight and average percentage of milk fat (APMF) and protein (APMP) and milk fat to protein ratio (FPR) during the first lactation, but negatively associated with culling rate during nulliparity in the offspring (P < 0.05). Maternal milk protein percentage was positively associated with birth weight, APMF, APMP, FPR and culling rate, but negatively associated with milk yield and fertility in the offspring (P < 0.05). Maternal FPR was positively associated with APMF and FPR, but negatively associated with culling rate, APMP and fertility in the offspring (P < 0.05). However, concentration of AMH in the offspring was not associated with MFP, MPP and MFPR (P > 0.05). In conclusion, the present study revealed that maternal milk fat and protein percentage and their ratio were associated with birth weight, survival, production and reproduction of the offspring. Yet it was a preliminary research and further studies are required to elucidate the mechanisms underlying these associations.


Assuntos
Lactação , Proteínas do Leite , Reprodução , Animais , Bovinos , Feminino , Peso ao Nascer , Leite/química , Leite/metabolismo , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Hormônio Antimülleriano/química , Hormônio Antimülleriano/metabolismo
7.
J Agric Food Chem ; 72(11): 6040-6052, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38454851

RESUMO

One type of large and intricate post-translational modification of milk proteins that has significant biological implications is phosphorylation. The characterization of phosphoproteins found in the bovine milk fat globule membrane (MFGM) is still mostly unknown. Here, label-free phosphoproteomics was used to identify 94 phosphorylation sites from 54 MFGM phosphoproteins in bovine colostrum (BC) and 136 phosphorylation sites from 91 MFGM phosphoproteins in bovine mature milk (BM). αs1-Casein and ß-casein were the most phosphorylated proteins in bovine colostrum. In bovine mature milk, perilipin-2 was the protein with the greatest number of phosphorylation sites. The results show that bovine colostrum MFGM phosphoproteins were mainly involved in immune function, whereas bovine mature MFGM phosphoproteins were mainly involved in metabolic function. Plasminogen and osteopontin were the most strongly interacting proteins in colostrum, whereas perilipin-2 was the most strongly interacting protein in bovine mature milk. This work demonstrates the unique alterations in the phosphorylation manner of the bovine MFGM protein during lactation and further expands our knowledge of the site characteristics of bovine MFGM phosphoproteins. This result confirms the value of MFGM as a reference ingredient for infant formula during different stages.


Assuntos
Colostro , Glicoproteínas , Leite , Feminino , Gravidez , Lactente , Humanos , Animais , Colostro/metabolismo , Perilipina-2/metabolismo , Leite/metabolismo , Glicolipídeos/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas do Leite/metabolismo , Caseínas/metabolismo
8.
Food Chem ; 445: 138691, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354646

RESUMO

Milk fat globule membrane proteins (MFGMP) in human milks have positive effects on infant's health. As gestational diabetes mellitus (GDM) causes variations in MFGMP, it is essential to understand the effects of GDMon MFGMP. This study aims to investigate and compare the MFGMP (>3 months postpartum) of GDM and non-GDM (NGDM) women using four-dimensional-data-independent-acquisition proteomics technology. Principal component analysis shows significant differences in the MFGMP of GDM and NGDM women. A total of 4747 MFGMP were identified in maturehuman milk of GDM and NGDM women. Among these proteins, 174 differentially expressed proteins (DEPs) were identified in MFGM of GDM and NGDM women. Albumin (FC = 7.96) and transthyretin (FC = 2.57) which are related to insulin resistance and involved in thyroid hormone synthesis, are significantly up-regulated in MFGMP of GDM mothers indicating insulin resistance, imbalance of glucose homeostasis and poor glucose metabolism might persist in postpartum period.


Assuntos
Diabetes Gestacional , Glicolipídeos , Glicoproteínas , Resistência à Insulina , Gotículas Lipídicas , Gravidez , Feminino , Humanos , Leite Humano/metabolismo , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteômica , Proteínas do Leite/metabolismo
9.
Cancer Sci ; 115(4): 1114-1128, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332689

RESUMO

The direction and magnitude of immune responses are critically affected when dead cells are disposed of. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) promotes the engulfment of apoptotic normal and cancerous cells without inducing inflammation. We have previously reported that a certain proportion of the cancer cells express abundant MFG-E8, and that such expression is associated with the shorter survival of patients with esophageal cancer who had received chemotherapy before surgery. However, the influence of tumor-derived and systemically existing MFG-E8 on antitumor immune responses has not yet been fully investigated. Herein, we showed that CTL-dependent antitumor immune responses were observed in mice with no or decreased levels of systemic MFG-E8, and that such responses were enhanced further with the administration of anti-PD-1 antibody. In mice with decreased levels of systemic MFG-E8, the dominance of regulatory T cells in tumor-infiltrating lymphocytes was inverted to CD8+ T cell dominance. MFG-E8 expression by tumor cells appears to affect antitumor immune responses only when the level of systemic MFG-E8 is lower than the physiological status. We have also demonstrated in the clinical setting that lower levels of plasma MFG-E8, but not MFG-E8 expression in tumor cells, before the treatment was associated with objective responses to anti-PD-1 therapy in patients with non-small cell lung cancer. These results suggest that systemic MFG-E8 plays a critical role during the immunological initiation process of antigen-presenting cells to increase tumor-specific CTLs. Regulation of the systemic level of MFG-E8 might induce efficient antitumor immune responses and enhance the potency of anti-PD-1 therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Esofágicas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Antígenos de Superfície/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Esofágicas/tratamento farmacológico , Inflamação/patologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas do Leite/metabolismo , Linfócitos T Citotóxicos/metabolismo
10.
Food Res Int ; 178: 113860, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309893

RESUMO

This study aims to analyze the differences in digestion properties and peptide profiles between the skim camel and bovine milk powder after static in vitro simulated infant gastrointestinal digestion. The hydrolysis degree of camel milk proteins exceeded by 13.18% that of bovine milk. The concentration and release rate of free amino groups in the camel milk digesta was higher than that of bovine milk powder, which was likely due to the higher ß-/αs-casein ratio and larger casein micelle size in camel milk. Camel milk powder presented higher ß-CN coverage and comparatively shorter bioactive peptides compared to bovine milk powder. The anti-inflammatory peptide KVLPVPQ displayed the highest abundance in camel milk powder. Outcomes of this study showed that camel milk proteins possessed superior digestibility and unique peptides, which outlined the potential nutritional implications of camel milk for infants.


Assuntos
Camelus , Caseínas , Animais , Humanos , Caseínas/química , Camelus/metabolismo , Pós , Peptídeos/química , Proteínas do Leite/metabolismo , Digestão
11.
J Biol Chem ; 300(2): 105631, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199575

RESUMO

Integrins are cell adhesion receptors that dimerize to mediate cell-cell interactions and regulate processes, including proliferation, inflammation, and tissue repair. The role of integrins in regulating insulin signaling is incompletely understood. We have previously shown that binding of the integrin ligand milk fat globule epidermal growth factor like 8 (MFGE8) to the αvß5 integrin promotes termination of insulin receptor signaling in mice. Upon ligation of MFGE8, integrin ß5 complexes with the insulin receptor beta (IRß) in skeletal muscle, resulting in dephosphorylation of IRß and reduction of insulin-stimulated glucose uptake. Here, we investigate the mechanism by which the interaction between ß5 and IRß impacts IRß phosphorylation status. We show in in vitro and in vivo in skeletal muscle in mice that antibody-mediated blockade of the ß5 integrin inhibits and recombinant MFGE8 promotes PTP1B binding to and dephosphorylation of IRß resulting in increased or reduced insulin-stimulated glucose uptake, respectively. The ß5-PTP1B complex is recruited by MFGE8 to IRß leading to termination of canonical insulin signaling. ß5 blockade enhances insulin-stimulated glucose uptake in wildtype but not Ptp1b KO mice indicating that PTP1B functions downstream of MFGE8 in modulating insulin receptor signaling. Furthermore, in a human cohort, we report serum MFGE8 levels correlate with indices of insulin resistance. These data provide mechanistic insights into the role of MFGE8 and ß5 in regulating insulin signaling.


Assuntos
Insulina , Receptor de Insulina , Animais , Humanos , Camundongos , Antígenos de Superfície/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Cadeias beta de Integrinas , Proteínas do Leite/metabolismo , Receptor de Insulina/genética , Camundongos Endogâmicos C57BL , Masculino , Linhagem Celular
12.
J Agric Food Chem ; 72(6): 3210-3217, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291649

RESUMO

This study aimed to explore the differences in milk fat globule membrane (MFGM) proteins between human milk (HM) and porcine milk (PM) using a label-free quantitative proteomic approach. A total of 3920 and 4001 MFGM proteins were identified between PM and HM, respectively. Among them, 3520 common MFGM proteins were detected, including 956 significant differentially expressed MFGM proteins (DEPs). Gene ontology (GO) enrichment analysis showed that the DEPs were highly enriched in the lipid metabolic process and intrinsic component of membrane. Kyoto Encyclopedia of Genes and Genomes pathways suggested that protein processing in the endoplasmic reticulum was the most highly enriched pathway, followed by peroxisome, complement, and coagulation cascades. This study reflects the difference in the composition of MFGM proteins between HM and PM and provides a scientific and systematic reference for the development of MFGM protein nutrition.


Assuntos
Glicoproteínas , Proteínas de Membrana , Proteômica , Humanos , Animais , Suínos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Leite/metabolismo , Glicolipídeos/metabolismo , Leite Humano/metabolismo , Gotículas Lipídicas/metabolismo
13.
Compr Rev Food Sci Food Saf ; 23(1): e13288, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284584

RESUMO

Whey protein derived bioactives, including α-lactalbumin, ß-lactoglobulin, bovine serum albumin, lactoferrin, transferrin, and proteose-peptones, have exhibited wide ranges of functional, biological and therapeutic properties varying from anticancer, antihypertensive, and antimicrobial effects. In addition, their functional properties involve gelling, emulsifying, and foaming abilities. For these reasons, this review article is framed to understand the relationship existed in between those compound levels and structures with their main functional, biological, and therapeutic properties exhibited either in vitro or in vivo. The impacts of hydrolysis mechanism and separation techniques in enhancing those properties are likewise discussed. Furthermore, special emphasize is given to multifunctional effects of whey derived bioactives and their future trends in ameliorating further food, pharmaceutical, and nutraceutical products. The underlying mechanism effects of those properties are still remained unclear in terms of activity levels, efficacy, and targeted effectiveness. For these reasons, some important models linking to functional properties, thermal properties and cell circumstances are established. Moreover, the coexistence of radical trapping groups, chelating groups, sulfhydryl groups, inhibitory groups, and peptide bonds seemed to be the key elements in triggering those functions and properties. Practical Application: Whey proteins are the byproducts of cheese processing and usually the exploitation of these food waste products has increasingly getting acceptance in many countries, especially European countries. Whey proteins share comparable nutritive values to milk products, particularly on their richness on important proteins that can serve immune protection, structural, and energetic roles. The nutritive profile of whey proteins shows diverse type of bioactive molecules like α-lactalbumin, ß-lactoglobulin, lactoferrin, transferrin, immunoglobulin, and proteose peptones with wide biological importance to the living system, such as in maintaining immunological, neuronal, and signaling roles. The diversification of proteins of whey products prompted scientists to exploit the real mechanisms behind of their biological and therapeutic effects, especially in declining the risk of cancer, tumor, and further complications like diabetes type 2 and hypertension risk effects. For these reasons, profiling these types of proteins using different proteomic and peptidomic approaches helps in determining their biological and therapeutic targets along with their release into gastrointestinal tract conditions and their bioavailabilities into portal circulation, tissue, and organs. The wide applicability of those protein fractions and their derivative bioactive products showed significant impacts in the field of emulsion and double emulsion stabilization by playing roles as emulsifying, surfactant, stabilizing, and foaming agents. Their amphoteric properties helped them to act as excellent encapsulating agents, particularly as vehicle for delivering important vitamins and bioactive compounds. The presence of ferric elements increased their transportation to several metal-ions in the same time increased their scavenging effects to metal-transition and peroxidation of lipids. Their richness with almost essential and nonessential amino acids makes them as selective microbial starters, in addition their richness in sulfhydryl amino acids allowed them to act a cross-linker in conjugating further biomolecules. For instance, conjugating gold-nanoparticles and fluorescent materials in targeting diseases like cancer and tumors in vivo is considered the cutting-edges strategies for these versatile molecules due to their active diffusion across-cell membrane and the presence of specific transporters to these therapeutic molecules.


Assuntos
Neoplasias , Peptidomiméticos , Eliminação de Resíduos , Humanos , Proteínas do Soro do Leite/metabolismo , Lactalbumina/metabolismo , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Proteínas do Leite/farmacologia , Lactoferrina/metabolismo , Peptonas/metabolismo , Hidrólise , Emulsões , Proteômica , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Aminoácidos
14.
Cell Biol Int ; 48(4): 473-482, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38173144

RESUMO

Milk proteins produced by lactating cells isolated from bovine mammary tissue can offer a sustainable solution to the high protein demand of a global growing population. Serum is commonly added to culture systems to provide compounds necessary for optimal growth and function of the cells. However, in a cellular agricultural context, its usage is desired to be decreased. This study aims at examining the minimum level of fetal bovine serum (FBS) required for the growth and functionality of bovine mammary epithelial cells (MECs). The cells were isolated from dairy cows in early and mid-lactation and cultured in reduced concentrations of FBS (10%, 5%, 1.25%, and 0%). Real-time cell analysis showed a significant effect of lactation stage on growth rate and 5% FBS resulted in similar growth rate as 10% while 0% resulted in the lowest. The effect of reducing FBS on cell functionality was examined by studying the expressions of selected marker genes involved in milk protein and fat synthesis, following differentiation. The gene expressions were not affected by the level of FBS. A reduction of FBS in the culture system of MEC, at least down to 5%, does not assert any negative effect on the growth and expression levels of studied genes. As the first attempt in developing an in-vitro model for milk component production using MEC, our results demonstrate the potential of MEC to endure FBS-reduced conditions.


Assuntos
Lactação , Soroalbumina Bovina , Feminino , Animais , Bovinos , Proteínas do Leite/metabolismo , Glândulas Mamárias Animais/metabolismo , Células Epiteliais/metabolismo
15.
J Agric Food Chem ; 72(4): 2135-2144, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240727

RESUMO

Methionine (Met) functions as a key stimulator on the mTOR signaling pathway and milk synthesis, but the molecular mechanism remains incompletely understood. We investigated the regulatory roles of BRCC36 in Met-stimulated milk lipid and protein synthesis, cell proliferation, and the mTOR signaling pathway. Knockdown of BRCC36 promoted milk lipid and protein synthesis in HC11 cells as well as cell proliferation by increasing the levels of mTOR gene transcription and protein phosphorylation. Conversely, the gene activation of BRCC36 had opposite effects. Furthermore, BRCC36 gene activation completely blocked Met stimulation on the BRG1 protein level and mTOR mRNA level and protein phosphorylation. BRCC36 bound to BRG1, and BRCC36 and BRG1 bound to the same region on the mTOR promoter. BRCC36 inhibited the BRG1 protein level and the binding of BRG1 to the mTOR promoter. Met decreased the BRCC36 protein level, and this effect was significantly attenuated by MG132 but not affected by cycloheximide or chloroquine. We further showed that Met increased BRCC36 ubiquitination degradation. Our findings reveal that Met promotes milk lipid and protein synthesis in MECs through the BRCC36-BRG1-mTOR signaling axis.


Assuntos
Metionina , Leite , Animais , Metionina/metabolismo , Leite/metabolismo , Glândulas Mamárias Animais/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacologia , Células Epiteliais/metabolismo , Lipídeos/farmacologia , Proteínas do Leite/metabolismo
16.
J Dairy Sci ; 107(2): 944-955, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37730177

RESUMO

This controlled study compared the effects of 2 different gradual debonding strategies on machine milk yield, flow, and composition in a cow-driven cow-calf contact (CCC) system with automatic milking. Cows had 24 h/d access to their calves during the first weeks of lactation. In the long debonding (LDB) treatment (n = 16), a gradual reduction of cows' access to their calves was initiated 4 wk after calving over a total period of 28 d; first to 12 h/d (14 d), and then to 6 h/d (14 d). In the short debonding (SDB) treatment (n = 14), gradual reduction was initiated 6.5 wk after calving over a total period of 10 d; first to 12 h/d (5 d), and then to 6 h/d (5 d). From 6 h/d, access was finally reduced to 0 h/d for 7 d for both treatments. Machine milk yield, somatic cell count, and peak and average milk flow were automatically registered at milking. During the 9-wk study period, composite samples were analyzed for milk composition. Data were analyzed with linear mixed effect models. Results showed that machine milk yield during 24 h/d access varied between cows (range 1.2-49.9 kg/d, average ± standard deviation 13.2 ± 7.82 kg/d). The LDB cows had a higher daily machine milk yield than SDB cows at the end of and after access reduction was completed (+5.0 ± 1.63 and +5.1 ± 1.55 kg during the last 5 d of 6 h/d access, and 0 h/d access, respectively). Somatic cell count was on a healthy level, with no difference between treatments. Milk fat content increased with reduction in access, regardless of treatment. Short debonding cows tended to show higher milk protein content and lower milk lactose content than cows with a longer debonding. This study has shown that a longer debonding initiated earlier may give a higher milk yield in the short term. The variation in machine milk yield may indicate differences in milk ejection, suckling, and visiting patterns and preferences among cows.


Assuntos
Lactação , Leite , Feminino , Bovinos , Animais , Leite/metabolismo , Proteínas do Leite/metabolismo , Ejeção Láctea , Indústria de Laticínios/métodos
17.
Biotechnol J ; 19(2): e2300287, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38047759

RESUMO

Gene loci of highly expressed genes provide ideal sites for transgene expression. Casein genes are highly expressed in mammals leading to the synthesis of substantial amounts of casein proteins in milk. The α-casein (CSN1S1) gene has assessed as a site of transgene expression in transgenic mice and a mammary gland cell line. A transgene encoding an antibody light chain gene (A1L) was inserted into the α-casein gene using sequential homologous and site-specific recombination. Expression of the inserted transgene is directed by the α-casein promoter, is responsive to lactogenic hormone activation, leads to the synthesis of a chimeric α-casein/A1L transgene mRNA, and secretion of the recombinant A1L protein into milk. Transgene expression is highly consistent in all transgenic lines, but lower than that of the α-casein gene (4%). Recombinant A1L protein accounted for 0.5% and 1.6% of total milk protein in heterozygous and homozygous transgenic mice, respectively. The absence of the α-casein protein in homozygous A1L transgenic mice leads to a reduction of total milk protein and delayed growth of the pups nursed by these mice. Overall, the data demonstrate that the insertion of a transgene into a highly expressed endogenous gene is insufficient to guarantee its abundant expression.


Assuntos
Caseínas , Lactação , Feminino , Camundongos , Animais , Caseínas/genética , Caseínas/metabolismo , Lactação/genética , Lactação/metabolismo , Camundongos Transgênicos , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Proteínas Recombinantes/metabolismo , Transgenes/genética , Glândulas Mamárias Animais/metabolismo , Mamíferos/genética
18.
Int J Biol Macromol ; 254(Pt 3): 127786, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918588

RESUMO

Valine, a branched-chain amino acid found in dairy cows, has been recognized for its critical role in milk synthesis. However, the precise effect of valine on lactation in dairy cows remains an area of investigation. In our study, bovine mammary epithelial cells (BMECs) were isolated to explore the mechanism through which valine enhances milk synthesis. The results showed that 100 µM valine significantly boosted the milk synthesis via TAS1R1-mTOR-DDX39B signaling pathway in BMECs. Subsequent investigations revealed that DDX39B governs the accumulation of PKM2 in the nuclei of BMECs. This nuclear buildup of PKM2 weakened the interaction between HDAC3 and histone H3, leading to an increase in the acetylation levels of histone H3. In an vivo context, the 0.25 % valine-enriched drinking water notably elevated in the expression of milk protein and fat in these mice. Further examination showed that 0.25 % valine drinking water considerably augmented the protein expression levels of DDX39B, PKM2, and p-mTOR in the mice mammary glands. In summary, our results suggest that valine, by modulating the TAS1R1-mTOR-DDX39B signaling pathway, directs the accumulation of PKM2 in the nucleus. This, in turn, escalates the acetylation levels of histone H3, promoting the synthesis of both milk protein and fat.


Assuntos
Água Potável , Histonas , Feminino , Animais , Bovinos , Camundongos , Histonas/metabolismo , Valina/metabolismo , Acetilação , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas do Leite/metabolismo , Células Epiteliais
19.
J Dairy Sci ; 107(1): 9-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37678791

RESUMO

Milk fat globule epidermal growth factor 8 (MFG-E8) and whey protein have emerged as promising bionutrient supplements for enhancing skeletal muscle mass and function. In the present study, aging-related sarcopenia rat model was employed to elucidate the effects of the combined administration of MFG-E8 and whey protein on the catabolism and anabolism of gastrocnemius protein. Combined intervention led to notable enhancements in the antioxidative stress status and mitochondrial biogenesis capacity of gastrocnemius muscle fibers in the aging rats, concomitant with a significant inhibition of lipid accumulation. Moreover, the synergistic effect of MFG-E8 and whey protein was found to exert modulatory effects on key signaling pathways, including PI3K/Akt/PGC-1α pathway and MAPK/ERK signaling pathways in the gastrocnemius muscle of the aging rats. Specifically, this combined intervention was observed to promote mitochondrial biogenesis and regulate the expression of protein anabolism and catabolism-related regulators, thereby facilitating the alleviation of mitochondrial oxidative stress and enhancing biogenesis in gastrocnemius tissues. The findings of our study provide compelling evidence for the potential of MFG-E8 as a promising dietary supplement with antisarcopenic properties to ameliorate muscle protein metabolism disorders and mitigate mitochondrial-mediated myoblast apoptosis induced by oxidative stress.


Assuntos
Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Sarcopenia , Animais , Ratos , Fator VIII/farmacologia , Galactose/farmacologia , Proteínas do Leite/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcopenia/prevenção & controle , Sarcopenia/veterinária , Transdução de Sinais , Proteínas do Soro do Leite/farmacologia
20.
J Dairy Sci ; 107(1): 141-154, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37690728

RESUMO

Milk proteins can be used as encapsulation walls to increase the bioavailability of active compounds because they can bind hydrophobic, hydrophilic, and charged compounds. The objective of this study was to investigate the effects of astaxanthin (ASTA) encapsulation and the functional properties of milk protein and ASTA nanocomposites by an ultrasound-assisted pH-shifting treatment of different milk proteins, including milk protein concentrate (MPC), micellar casein (MCC), and whey protein isolate (WPI). The ultrasound-assisted pH-shifting treatment of milk protein helped to improve the encapsulation rate of ASTA. Therein, MCC showed great improvement of encapsulating ASTA after co-treatment with the raised encapsulated rate of 5.11%, followed by WPI and MPC. Furthermore, the nanocomposites of ASTA with milk protein exhibit improved bioavailability, antioxidant capacity, and storage stability. By comparison, MCC-encapsulated ASTA has the best storage stability, followed by MPC, and WPI-encapsulated ASTA has the least stability over a 28-d storage period. The results of intrinsic fluorescence and surface hydrophobicity showed that milk protein underwent fluorescence quenching after binding to ASTA, which was due to the hydrophobic sites of the protein being occupied by ASTA. In general, the nanocomposites of milk protein and ASTA fabricated by using an ultrasound-assisted pH-shifting treatment have the potential to be better nano-delivery systems for ASTA in functional foods, especially MCC, which showed excellent performance in encapsulation after treatment technique.


Assuntos
Caseínas , Micelas , Animais , Caseínas/química , Proteínas do Soro do Leite/química , Proteínas do Leite/metabolismo , Concentração de Íons de Hidrogênio , Xantofilas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...